

CERTIFICATE OF ANALYSIS

COA No.: CT 51662/20 COA Date: 12 October 2020

Page: 1 of 8

Customer: IQ Green Solutions (Pty) Ltd.

Order No.: n/a

Client Reference No.: n/a

Analysed by: Swift Silliker Pty. Ltd. t/a Merieux NutriSciences

7 Warrington Road.

Claremont.

Western Cape, South Africa.

Received from: IQ Green Solutions (Pty) Ltd.

15 Jan van Riebeeck Drive,

Paarl.

Western Cape, South Africa.

MERIEUX lutriSciences

Swift Silliker (Pty) Ltd t/a Mérieux NutriSciences

7 Warrington Road / Claremont Cape Town / South Africa / 7708 Tel: +27 (21) 683 8436 / 08613 SWIFT Fax: +21 (21) 683 8422 / Email: za-info@mxns.com

www.merieuxnutrisciences.com

TO

IQ GREEN SOLUTIONS (PTY) LTD

15 JAN van RIEBEECK DRIVE PAARL 7620

MOHAMED MOOSA mohamed@iq-greensolutions.com

**Information provided by customer

DATE RECEIVED: 22/09/2020

TEST TYPE: BACTERICIDAL ACTIVITY

METHOD NO.: SWM.MIC.015

a) Sample Identification

□ Product Name**:	ANO-LYTE	
□ Batch Number**:	08200821 20R1728 (Batch 28)	
□ Manufacturer/ Supplier**:	IQ Green Solutions (Pty) Ltd.	
☐ Manufacturing Date**:	19 August 2020	
□ Exp. Date**:	19 August 2021	
☐ Laboratory Ref No.:	CT 51662/20	
☐ Storage Conditions:	Ambient	
☐ Active Substances and their concentrations**:	Hypochlorous solution (HOCL ± 500ppm)	
☐ Appearance of the Product:	Liquid, clear, colourless	
☐ Recommended Product Dilution by Manufacturer**	Use as is/Neat	

b) Methods Used:

☐ SANS 51276:2011 - Evaluation of Bactericidal Activity of Chemical disinfectants & Antiseptics (Neutralization by dilution Method)

Directors: V. Stewart (Managing), A. Lambrechts, P. Sans (France), S. Schneider (France), J-F. Billet (France) / Reg. No 2000/025067/07

- TMA = Total Microbial Activity / Total Viable Plate Count.
- · Limit of detection of Conventional Plate Count Methods = 10CPU, unless otherwise specified.
- A test report relates only to the specific item submitted for testing. It furnishes or implies no guarantee whatsoever, in respect of a similar item that has not been tested.
- · Method numbers refer to in-house methods Standard test method references available on request.
- · Detection times only relevant to certain test methods where Malthus Systems are applicable.
- The test report shall not be reproduced except in full without written approval of Swift Silliker (Pty) Ltd t/a Mérieux NutriSciences.

COA No.:	CT 51662/20
COA Date:	12/10/2020
Page	2 of 8

c) Experimental Conditions – SANS 51276 Edition 2

Obligatory Conditions:

Enterococcus hirae ATCC10541 Escherichia coli ATCC10536 Pseudomonas Aeruginosa ATCC15442 Staphylococcus Aureus ATCC6538
1%; 50% & 80% (Please note: a NEAT concentration is equal to 80% of sample. Products can only be tested at a concentration of 80 % or less, as some dilution is always produced by adding the test organisms and interfering substance.)
Liquid, clear, colourless
0.3g/l Bovine Albumin, Clean conditions
5 minutes
20°C
Sodium thiosulphate (20g/l) + Tween 80 (30g/l) + Lecithin (3g/l)
Aerobic incubation: 37°C ± 1°C
Tryptone Soy Agar
09/10/2020 – 12/10/2020

d) Test Results: see tables 1-4.

e) Summary of Results

Bactericidal Efficacy

Organism	Experimental conditions	Product Conc.	Contact time	CFU/ML; Start	CFU/ML: End	Log Reduction (Log R= ≥ 5)	Evaluation
Enterococcus hirae Clean conditions	Obligatory	1%		7.44	>3.52	<3.92	Fail
	Clean	50%	5 minutes	7.44	>3.52	<3.92	Fail
	conditions	80%		7.44	<2.15	>5.29	Pass
ATCC10536 C	Obligatory,	1%		7.46	>3.52	<3.94	Fail
	Clean conditions	50%	5 minutes	7.46	<2.15	>5.31	Pass
		80%		7.46	<2.15	>5.31	Pass
Pseudomonas	Obligatory,	1%		7.33	>3.52	<3.81	Fail
aeruginosa	Clean	50%	5 minutes	7.33	<2.15	>5.18	Pass
ATCC15442	conditions	80%		7.33	<2.15	>5.18	Pass
Staphylococcus	Obligatory,	1%		7.48	>3.52	<3.96	Fail
Aureus ATCC6538	Clean	50%	5 minutes	7.48	>3.52	<3.96	Fail
41006538	conditions	80%		7.48	<2.15	>5.33	Pass

COA No.:	CT 51662/20
COA Date:	
Page	3 of 8

f) Conclusions

Obligatory Experimental Conditions

According to SANS 51276,	the test product ANO-LYTE,	when used at concentr	ations 80% has bactericion	dal activity ($logR \ge 5$) under the
following test conditions:	,			

O	Contact time:	5 minutes
m	Temperature:	20°C

☐ Interfering substance: 0.3g/ L Bovine albumin – Clean conditions

□ Test strains: Escherichia coli ATCC10536, Enterococcus hirae ATCC10541, Pseudomonas aeruginosa ATCC15442, Staphylococcus

Aureus ATCC6538

COA No.: CT 51662/20 COA Date: Page 4 of 8

Ref. Report section (d)

ORGANISM: Enterococcus hirae ATCC10541

Obligatory Experimental Conditions Table 1a: Validation test

Validation suspension (Nve)		Experimental Conditions Control (A)			Neutralizer Control (B)			Method Validation (C) (80% Product Concentration)			
		Ave			Ave			Ave			Ave
Vc1	44	42	Vc1	68	72	Vc1	56	50	Vc1	44	50
Vc2	40	42	Vc2	76	12	Vc2	60	58	Vc2	56	50
Accepta limits		Nv ₀ = 30 - 160	Accep limits	tance	≥ 0.5x Nv ₀	Acceptar limits	ice	≥ 0.5x Nv ₀	Accept limits	ance	≥ 0.5x Nv ₀
Somplie	8	Yes	Comp	lies	Yes	Complies		Yes	Compli	es :	Yes
).5 x Nv ₀) = 21										

Table 1b: Test suspensions

Dilution (Test suspension)	Vct	Vc2	Average N (wm)	Log N	No.	Log N₀
10 ⁻⁶	280	256	0.0 -408	0.44	2.0407	7.44
10 ⁻⁷	32	40	2.8 x 10 ⁸	8.44	2.8 x 10 ⁷	7.44
Acceptance limits:	Log N is between 8.1	7 and 8.70	Complies		Yes	
Acceptance limits:	Log N₀ is between 7.1	7 and 7.70	Complies		Yes	
Acceptance limits:	Control of weighted m	ean counts: 7.4	Complies		Yes	

Table 1c: Log Reduction values

Product Concentration	Vet	Vc2	Na (Ave Vc1 & Vc2 x 10)	Log Na	Log Reduction (N₀: 7.44)	Contact time
1%	>330	>330	>3300	>3.52	<3.92	5 minutes
50%	>330	>330	>3300	>3.52	<3.92	5 minutes
80%	<14	<14	<140	<2.15	>5.29	5 minutes

Where:

VC N N₀ Na = number of cfu/mL of the experimental conditions control = number of cfu/mL of the neutralization control = Viable Count = Test suspension = Test suspension at beginning of contact time (t=0) = Test suspension (survivors) before neutralization = number of cfu/mL of the method validation

= Validation suspension = Validation suspension at beginning of contact time Νv Nvo

COA No.: CT 51662/20 **COA Date:** Page 5 of 8

ORGANISM: Escherichia coli ATCC10536

Obligatory Experimental Conditions Table 1a: Validation test

Ave			A						
			Ave	.		Ave			Ave
52	Vc1	68	70	Vc1	68	70	Vc1	56	C.4
J2	Vc2	88	70	Vc2	72	70	Vc2	72	64
⁄₀ = 30 - 160	Accept limits	tance	≥ 0.5x <i>Nv</i> ₀	Acceptan limits	ice	≥ 0.5x Nv ₀	Accepta	ance	≥ 0.5x <i>Nv</i> ₀
Yes	Compl	ies	Yes	Complies		Yes	Compli	98	Yes
/(160	52	52	52	52	52 Vc2 88 Vc2 72	52	52	52

Table 1h: Test suspensions

Table 1b: Test suspe	nsions					
Dilution (Test suspension)	Vel	Ve2	Average N (wm)	Log N	N ₀	Log No
10 ⁻⁶	296	272				
10 ⁻⁷	40	32	2.9 x 10	8.46	2.9 x 10 ⁷	7.46
Acceptance limits:	Log N is between 8.17	7 and 8.70	Complies		Yes	
Acceptance limits:	Log N₀ is between 7.1		Complies		Yes	
Acceptance limits:	Control of weighted m	ean counts: 7.9	Complies		Yes	

Table 1c: Log Reduction values

Product Concentration	Vc1	V62	Na (Ave Vc1 & Vc2 x 10)	Log Na	Log Reduction (No: 7.46)	Contact time
1%	>330	>330	>3300	>3.52	<3.94	5 minutes
50%	<14	<14	<140	<2.15	>5.31	5 minutes
80%	<14	<14	<140	<2.15	>5.31	5 minutes

Where:

COA No.:	CT 51662/20
COA Date:	
Page	6 of 8

ORGANISM: Pseudomonas Aeruginosa ATCC15442

Obligatory Experimental Conditions Table 1a: Validation test

Valida	tion susp	ension (Nv₀)	Expe	Contro	Conditions J (A)	Neut	ralizer Co	introl (B)		(80% Pro	A CONTRACTOR OF THE PARTY OF TH
		Ave			Ave			Ave			Ave
Vc1	56	48	Vc1	40	46	Vc1	64	60	Vc1	44	48
Vc2	40	40	Vc2	52	46	Vc2	56	60	Vc2	52	40
Accepta imits	nce	Nv ₀ = 30 - 160	Accep limits	tance	≥ 0.5x Nv ₀	Acceptar limits	ICE	≥ 0.5x Nv ₀	Accept limits	ance	≥ 0.5x Nv₀
Somplie	8	Yes	Comp	ies	Yes	Complies		Yes	Compli	98	Yes

Table 1b: Test suspensions

Dilution (Test suspension)	Vc1	Vc2	Average N (wm)	Log N	No	Log N ₀
10 ⁻⁶	192	232	0.4408	0.00	0.4407	7.00
10 ⁻⁷	20	28	2.1 x 10 ⁸	8.33	2.1 x 10 ⁷	7.33
Acceptance limits:	Log N is between 8.1	7 and 8.70	Complies		Yes	
Acceptance limits:	Log N₀ is between 7.1	7 and 7.70	Complies		Yes	
Acceptance limits:	Control of weighted m	ean counts: 8.8	Complies		Yes	

Table 1c: Log Reducti	ion values					
Product	Vc1	Vc2	Na	Log Na	Log	Contact time
Concentration			(Ave Vc1 & Vc2 x 10)		Reduction	
					(No: 7.33)	
1%	>330	>330	>3300	>3.52	<3.81	5 minutes
50%	<14	<14	<140	<2.15	>5.18	5 minutes
80%	<14	<14	<140	<2.15	>5.18	5 minutes

Where:

VC N No Na Nv Nv	= Viable Count = Test suspension = Test suspension at beginning of contact time (t=0) = Test suspension (survivors) before neutralization = Validation suspension = Validation suspension at beginning of contact time	A B C	= number of cfu/mL of the experimental conditions control = number of cfu/mL of the neutralization control = number of cfu/mL of the method validation
---------------------------------	--	-------------	--

COA No.: CT 51662/20 COA Date: Page 7 of 8

ORGANISM: Staphylococcus Aureus ATCC6538

Obligatory Experimental Conditions Table 1a: Validation test

Validat	ion susp	ension (Nv ₀)	Expe	rimental Contro	Conditions il (A)	Neul	tralizer Co	introl (B)	Mi	thod Valid (80% Pro Concent	and the second second second
		Ave			Ave			Ave			Ave
Vc1	64	52	Vc1	68	72	Vc1	64	7.4	Vc1	68	70
Vc2	40	32	Vc2	76	12	Vc2	84	74	Vc2	72	70
Acceptar limits	1Ce	Nv _o = 30 - 160	Accep limits	tance	≥ 0.5x Nv ₀	Acceptar limits	100	≥ 0.5x Nv ₀	Accept limits	ance	≥ 0.5x Nv ₀
Complies	\$	Yes	Comp	ies	Yes	Complies		Yes	Compli	es	Yes

Table 1b: Test suspensions

Table Ib. Test suspe	Halona					
Dilution (Test suspension)	Vc1	Vc2	Average N (wm)	Log N	No	Log N₀
10 ⁻⁶	288	312	0.0408	0.46	0.0.407	7.40
10 ⁻⁷	28	36	3.0 x 10 ⁸	8.48	3.0 x 10 ⁷	7.48
Acceptance limits:	Log N is between 8.17	7 and 8.70	Complies		Yes	
Acceptance limits:	Log N₀ is between 7.1	7 and 7.70	Complies		Yes	
Acceptance limits:	Control of weighted m	ean counts: 9.4	Complies		Yes	

Table 1c: Log Reduction values

Product Concentration	Vc1	Vc2	Na (Ave Vc1 & Vc2 x 10)	Log Na	Log Reduction (No: 7.48)	Contact time
1%	>330	>330	>3300	>3.52	<3.96	5 minutes
50%	>330	>330	>3300	>3.52	<3.96	5 minutes
80%	<14	<14	<140	<2.15	>5.33	5 minutes

Where:

VC N N₀ Na Nv Nv₀	= Viable Count = Test suspension = Test suspension at beginning of contact time (t=0) = Test suspension (survivors) before neutralization = Validation suspension = Validation suspension at beginning of contact time	A B C	= number of cfu/mL of the experimental conditions control = number of cfu/mL of the neutralization control = number of cfu/mL of the method validation
----------------------------------	--	-------------	--

COA No.:	CT 51662/20
COA Date:	
Page	8 of 8

Test Validity

The test is valid when, for each test organism:

- N (Test suspension) is between 1,5x10⁸ and 5,0x10⁸ (8,17 ≤ lg N ≤ 8,70)
- No (Test suspension is between 1,5x10⁷ and 5,0x10⁷ (7,17 ≤ Ig N0 ≤ 7,70)
- Nv₀ is between 30 and 160 (3,0x10¹ and 1,6x10²)
- Nv is between 3,0x10² and 1,6x10³
- A, B, C are equal to or greater than 0,5xNv0.
- Control of weighted mean counts: quotient is not lower than 5 and not higher than 15.
- At least one of the test concentrations will demonstrate a log reduction of less than 5 log.

Pass Requirements

• For Bactericidal efficacy (as per SANS 51276), the product shall demonstrate at least a 5 decimal log reduction when diluted with hard water and tested under the other obligatory test conditions.

Note: Products can only be tested at a concentration of 80 % or less, as some dilution is always produced by adding the test organisms and interfering substance. A concentration indicated as NEAT therefore must be interpreted as a 80% solution.

GENE DASS MICROBIOLOGIST TANYA SWANSON MICROBIOLOGIST